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A Quasi-Static Modification of TLM at
Knife Edge and 90° Wedge Singularities

Lucia Cascio, Giampaolo Tardioli, Tullio Rozzi, and Wolfgang J. R. Hoefer

Abstract—A common drawback of numerical techniques such
as transmission line method (TL.M) and finite-difference time-
domain method (FDTD) resides in the difficulty to accurately
describe the electromagnetic field in structures with singularities.
In this paper a local modification of the two-dimensional (2-D)
TLM algorithm for the nodes surrounding a knife edge and a
90° wedge is proposed. A quasi-static approximation of the field
is used to derive an equivalent circuit of the edge. The proposed
theory is then extended to the characterization of infinitely thin
septa, the vertex of which is located anywhere between the nodes
of the TLM mesh. The proposed corner correction is compared
with the uncorrected TLM results and with data available in the
literature, revealing a marked enhancement in the accuracy and
convergence of the results.

I. INTRODUCTION

HE transmission line method (TLM) [1] is widely re-

garded as an efficient and flexible technique for the
analysis of a large class of electromagnetic problems. One
of the main limitations of this and other numerical techniques
is that the spatial discretization fails to accurately describe
the singularities of the electromagnetic field, which occur for
example close to sharp edges.

Unless a very fine discretization is used, the singular behav-
ior around the corner is poorly represented and the frequency
domain characteristics of the structure will typically be shifted.
This error is very often unacceptable when we are dealing with
narrowband structures such as filters.

The accuracy of the discretized model can be improved by
introducing a better description of the field singularity, through
local modification of the algorithm.

An approach based on the local modification of the standard
TLM method to account for the energy stored around the edge
has been proposed in [2]. The nodes surrounding the corner
are loaded with stubs with optimized characteristics.

In this paper a new approach based on the quasi-static ap-
proximation of the Green’s functions for an infinite conductive
wedge is proposed. The field distribution around a corner is
represented in terms of an equivalent circuit which can be
implemented easily and efficiently in TLM. The accuracy of
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Fig. 1. Conducting wedge.

the proposed method is compared to that of the standard two-
dimensional (2-D) TLM algorithm by means of test structures
for which the results are also available in the literature.

II. THEORY

Consider a current filament adjacent and parallel to a
conducting wedge (Fig. 1) where (p’, ¢') indicates the source
point, and (p, ¢) the field point. The excitation is an impulsive
current of strength L.

In this 2-D problem the electric field component £, in cylin-
drical coordinates can be expressed as a series of trigonometric
and Bessel functions [3]

E.(p, ¢) = G(p, ¢; p', ¢") )

G(p, ¢; 0 &)
_ __ wkT
2(r — )
S B (k') g, (k) sin (v(e — )
sin(v(¢' —a))  p<yp
S0 B (kp)J, (k') sin (v( — )
sin(U(¢ —a)  p> 4

nw
h = —. 2

where v 2r —a) 2

The expressions in (2) present a complex frequency depen-
dence, the variable & being a function of w. Using approxima-
tions for the Bessel and Hankel functions for small values of
the argument [4], (2) can be considerably simplified leading
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Fig. 2. Knife edge and 90° wedge position in the TLM mesh.

to a quasi-static solution given by [5]
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1. APPLICATION TO THE TLM MESH

The quasi-static expression for the electric field described in
(3) represents the basis for the determination of an equivalent
circuit describing the field around the edge.

In order to reduce the number of ports surrounding the edge,
the conducting boundaries have been placed on the nodes of
the TLM mesh. In the case of a knife edge (« = 0°) a three-
port equivalent circuit is required to characterize the edge
behavior, while in the case of a 90° wedge (o = 45°) a
two-port equivalent circuit is sufficient (Fig. 2).

Since the voltages and currents at the ports are related to
the electric field E, and to the current density J, (4), we can
describe the equivalent circuit by a Z matrix representation
[6], [7]. For each port of the circuit we may define

Vi — E.(pi, ¢3)

I{pi, ¢ I(pi, ¢i
I — —J.(ps, ) = — (27rp- ) =- (7rAl )§
pi=5h =i @

where 4 indicates the number of the port in the circuit.
Consequently, the impedance elements are defined as

Zij = —m NG (pi, di; P}, 85) = Glos, ¢35 P, 65). (5)

Due to the linear dependence of the Green’s function on the
frequency (3), the equivalent circuit is composed by inductive
elements.

A more general definition for the impedances is given by

1 -
Zys = ——— G(s; s')dsds’ (6)

where G(s; s') represents the Green’s function determined in
(5), and W;, W; are the domains of integration for the source
variables and for the field variables. The adopted domains
“of integration are 90° circular sectors, which account for the
energy stored around the corner. In Fig. 3 are reported the
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Fig. 3. Domains of integration for the determination of Z.

domains of integration for both the knife edge and the 90°
corper. Since we place the boundary on the TLM nodes,
(Fig. 2) the number of TLM ports connected to the corner
edge is, three for the knife edge, and two for the 90° corner.
The correspondent Z matrices are therefore, respectively, of
dimension 3 x 3 and 2 x 2. Due to the reciprocity of the Green’s
function and to the geometrical symmetry of the problem there
are only four distinct elements z;; for the knife edge equivalent
circuit, and only two for the 90° wedge
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IV. DISCRETIZATION PROCESS

Li=12 (9

In order to realize the equivalent circuit in the TLM mesh,
we need to determine the relation between the incident and
reflected voltages at the ports as a function of the Z matrix el-
ements (6). Due to the quasi-static approximation, the voltages
at the ports of the equivalent circuits depend only linearly on
the frequency

V = jw[Z)I
Wi I
V= : ; :

V’n—ports

~l
It

10)

I’n—ports

The vectors V and I can be expressed in terms of the
incident and reflected TLM voltages at the edge, V* and V7,
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according to the relation

V=74V T=%@'-V)  qa

where Y; is the TLM link line admittance.

The frequency dependance jw is discretized using a bilinear
transformation [8]; this scheme guarantees the stability of
the discretized model. The frequency' distortion introduced
is irrelevant for frequencies propagating with low dlspersmn
error in the TLM mesh (A > 10 - Al). Hence

'wN'ztan wAt\ 2 1 — g—Jwite .
JORIRG 2 )T AI\1+edwAt )
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Substituting relations (11) and (12) in (10), we obtain a
recursive formulation (13) characterizing the corner condition
in the TLM process

7i= (%0~ n) (f;%i’z‘] )

Vit Vie) = Vi a3)

In _this exgession Yy is the TLM link line admittance,
and V7 and Vi are the vectors of the voltages incident and
reflected at the terminals of the equivalent circuit at the time
step k. ’

V. GENERALIZATION TO KNIFE
EDGE SEPTA OF ARBITRARY LENGTH

So far, we have restricted our study to metallic wedges
in which the vertex coincided with a TLM node. A useful
extension of the theory described above is the characterization
of infinitely thin septa, the vertex of which is placed anywhere
between the nodes of TLM mesh (Fig. 4). This would allow
to use a relatively coarse mesh and still accurately describe
septa slightly longer than an integer number of Al.

The theory exposed for the description of the knife edge
discontinuity is still valid; in particular the expression for the
Green’s function (3) remains the same, once we have centered
the coordinate system (p, ¢) on the corner of the septum. The
field at the corner is modeled with a three-port equivalent
circuit, since the metallic septum is placed on the nodes of
the TLM mesh.

To determine the Z elements describing the circuit we must
integrate the Green’s function over a circular sector, for both
the source points and the field points (Fig. 4). As an example,
the expression for 74 is shown in (14)

b2 " p2(9)
a0
T w? @)

Pz (¢' )
/ G(p, b5 0, )0 dp’.
’ P (¢") .

The evaluation of this kind of integral is particularly cum-
bersome, since the integrand is a series (3) and its argument is
not uniquely defined over the domain of integration (depending
on the ratio p/p’); moreover, since the center of the coordinate
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Fig. 4. Position of the knife edgé septum of arbitrary length in the TLM
mesh and domain of integration for the evaluation of Z;;.

system is shifted with respect to the vertex of the circular
sector, the domain of integration is not easily described. For
these reasons, even a numerical evaluation of the integrals with
an acceptable level of precision is burdensome.

Consequently, an approximate solution for the values of the
Z matrix has been found empirically. We have assumed a
quadratic dependence and determined the coefficients experi-
mentally comparing the obtained results with Marcuvitz’s data.
Defining with w the length of the septum extending beyond
the TLM node (Fig. 4), the approximate expressions for the
Z elements are given by

z11(s) = 211 (0)[~5" — s + 1]
213(s) = 213(0)[s” — 25 + 1]
2’12(8) = zlg(O)[S —2s+ 1]
292(8) = 222(0)[s% — 25 + 1]
w
TN

In these formulas the values z;;(0) refer to the case pre-
viously analyzed, where the speptum length was equal to an
integer number of Al.

A similar set of expressions has been found also for the case
of septa slightly shorter (w < 0) than an integer number of Al

z11(8) = 211(0)[—s2 — 25 + 1]
213(s) = 213(0)[s* — s +1]
212(8) = 212(0)[s% — 5 + 1]

( 292(0)[s? — V25 + 1]

w
Al < 0.
These approximations give good results for values of |s| <
0.35. This restricted range does not represent a serious lim-
itation; in fact, for most of the practical applications this
condition can be easily verified with the choice of a relatively
coarse mesh. On the other hand, (15) and (16) allow to treat
perturbations of the septum length that are small, compared
to the mesh size; these would otherwise require very fine
discretizations to exactly describe the geometry.

> 0. (15)

I
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VI. RESULTS

The proposed method has been applied to analyze discon-
tinuities in the transverse section of a rectangular waveguide
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Fig. 5. Top view of the inductive irises in WR(28) waveguide. (a) Thin iris.
(b) Thick iris.

- Marcuv:ltz
2 1 A=z |7
1 S A=a48 |
036 28 30 32 34 36 38 40 42
Frequency (GHz)
(@)
R —_— :
0.9|
0.8
07
0.6
@ 05
04 —_—
0_3,% - : |
O RO —— Marcuvi{z | .1
02 T N2
01l P | 2 Al=a/d8 |

O3 38 30 32 34 36 38 40 &2
Frequency (GHz)
(b)

Fig. 6. S-parameters for the thin iris in WR(28) waveguide. (a) TLM with
corner correction. (b) TLM without corner correction.

(Fig. 5). To validate the model of a knife edge, a symmetrical
inductive iris with aperture d = 3.556 mm (a/2) in a
WR(28) waveguide has been analyzed both with the corner
modification and the regular TLM algorithm, and the results
have been compared with Marcuvitz’s [9] formulae. The
scattering parameters obtained for different discretizations are

,shown in Fig. 6(a). Note that the corner modification improves
considerably the accuracy of the TLM algorithm [Fig. 6(b)]
even when a very coarse mesh is used.

To further test the efficiency of the proposed method, an
iris-coupled waveguide bandpass filter (Fig. 7), with center
frequency of 33.18 GHz and bandwidth of 0.94 GHz, has been
analyzed. Also in this case the corner correction results in a
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Fig. 7. Top view of the iris coupled bandpass filter in WR(28) waveguide.
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Fig. 8. Iris coupled bandpass filter in WR(28) waveguide. (a) TLM with

corner correction. (b) TLM without corner correction.

much faster convergence to Marcuvitz’s curves as compared
with the standard TLM algorithm [Fig. 8(a) and (b)].

To verify the model of the 90° wedge, a symmetrical iris,
of thickness ¢t = 1.1853 mm (a/6) in a WR(28) waveguide
has been examined. Comparison with the uncorrected TLM
algorithm and other techniques has shown that in this case the
correction is less effective since, for this kind of discontinu-
ities, the standard TLM method provides good accuracy even
with relatively coarse discretizations [Fig. 9(a) and (b)].

Finally, the correction for infinitely thin septa of arbitrary
length in the TLM mesh has been validated, both for positive
and negative variations of the length with respect to a integer
number of Al. A symmetrical inductive iris with aperture
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Fig. 9. S-parameters for the thick iris in WR(28) waveguide. (a) TLM with
corner correction, (b) TLM without comer correction.

{4

Fig. 10. Top view of the thin inductive iris in WR(28) waveguide with septa
of arbitrary length I.

slightly different from /2 has been analyzed with the corner
modification (Fig. 10), and the results have been compared
with Marcuvitz’s formulae. In particular, we have discretized
the waveguide width with 12A/, and considered the septum
length I = a/44s-Al (for s = 0.19 and 0.23). We have chosen
lengths that, with the standard TLM method, would require a
very fine mesh discretization to obtain an exact description.
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Fig. 11. Parameters -of a thin inductive iris in WR(28) waveguide

for -different lengths of the septa. (a) Discretization: Al = a/12.
w = +0.19A7, +0.23Al; (b) Discretization: Al = a/12. w = —0.19Al,
—0.23A1.

The scattering parametefs obtained for the two structures
are shown in Fig. 11(a) and (b). From the results we can see
that the corner correction is always in good agreement with

. Marcuvitz’s data, even if a coarse discretization is used. From

these figures it is also possible to verify that the. proposed
technique is sensitive to small variations of the length; in fact,
the curves obtained with the corner correction for a variation of
0.04 Al (from s = +0.19 to s = +0.23) are clearly distinct
and in agreement with the theoretical results. To appreciate
such a small difference in behavior by using the standard TLM
method, we would need a 25 times finer discretization.

‘VII. CONCLUSION

In this paper we have derived an equivalent circuit for knife
edges and 90° wedges, based on a quasi-static formulation of
the field around the edge, and we have introduced it in the
2-D-TLM algorithm.

The proposed corner correction has been compared with the
regular TLM method and with data available in the literature,
and has yielded a noticeable improvement in the accuracy as
well as in the convergence of the results for knife edges, while
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in the case of 90° wedges the standard TLM algorithm has
proved to be sufficiently accurate.

The better description of the singular behavior of the field
around the edge allows considerable savings in computer
processing time and memory requirements when compared to
mesh grading, since the desired accuracy can be achieved by
using a coarser lattice.

An immediate extension of this method is its application
to problems involving dielectric interfaces and sharp metallic
boundaries, such as microstrips.
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